Nested-Batch-Mode Learning and Stochastic Optimization with An Application to Sequential MultiStage Testing in Materials Science

نویسندگان

  • Yingfei Wang
  • Kristofer G. Reyes
  • Keith A. Brown
  • Chad A. Mirkin
  • Warren B. Powell
چکیده

We consider the nested-batch decision problem where we need to make a first stage choice (e.g. the size of a nanoparticle) after which we then need to run a series of experiments in batch selecting several second stage choices (e.g. testing different densities of the nanoparticle). Since these experiments are time consuming and expensive, we propose to estimate the value of information from the choice of the first stage decision (the size), to help guide the scientist in the selection of the next batch of experiments to run. The batch experiments are designed assuming that we maximize the value of information for an entire batch. The value of information, known as the Knowledge Gradient, requires calculating the expected maximum of a function. Since the calculation of the expected maximum is computationally intractable, we propose a Monte Carlo-based approach to address this hurdle in the context of both the batch and nested-batch problems. We empirically demonstrate the effectiveness of our approach on the material design problem of maximizing output current of a photoactive device, where it is competitive with a fully sequential optimal learning strategy and significantly outperforms pure exploration, pure exploitation and ε-greedy strategies with regard to the opportunity cost metric (8.1).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization

Active learning can lead to a dramatic reduction in labeling effort. However, in many practical implementations (such as crowdsourcing, surveys, high-throughput experimental design), it is preferable to query labels for batches of examples to be labelled in parallel. While several heuristics have been proposed for batch-mode active learning, little is known about their theoretical performance. ...

متن کامل

Medium Term Hydroelectric Production Planning - A Multistage Stochastic Optimization Model

Multistage stochastic programming is a key technology for making decisions over time in an uncertain environment. One of the promising areas in which this technology is implementable, is medium term planning of electricity production and trading where decision makers are typically faced with uncertain parameters (such as future demands and market prices) that can be described by stochastic proc...

متن کامل

From Empirical Observations to Tree Models for Stochastic Optimization: Convergence Properties

In multistage stochastic optimization we use stylized processes to model the relevant stochastic data processes. The basis for building these models is empirical observations. It is well known that the determining distance concept for multistage stochastic optimization problems is the nested distance and not the distance in distribution. In this paper we investigate the question of how to gener...

متن کامل

An integrated vendor–buyer model with stochastic demand, lot-size dependent lead-time and learning in production

In this article, an imperfect vendor–buyer inventory system with stochastic demand, process quality control and learning in production is investigated. It is assumed that there are learning in production and investment for process quality improvement at the vendor’s end, and lot-size dependent lead-time at the buyer’s end. The lead-time for the first batch and those for the rest of the batches ...

متن کامل

Trajectory Optimization for a Multistage Launch Vehicle Using Nonlinear Programming

This work is an example of application of nonlinear programming to a problem of three-dimensional trajectory optimization for multistage launch vehicles for geostationary orbit missions. The main objective is to minimize fuel consumption or equivalently to maximize the payload. The launch vehicle considered here, Europa-II, consists of 5 thrust phases and 2 coast phases. Major parameters of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2015